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Aircraft Structural Mass Property Prediction

Using Conceptual-Level Structural Analysis

Matthew G. Sexstone

Aerospace Engineer, Systems Analysis Branch

National Aeronautics and Space Administration
Langley Research Center, Hampton, Virginia

This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS)
structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property

analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations
at the conceptual design level and Finite Element Analysis (FEA ) at the detailed design level. ELAPS allows for the

modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical
structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the

design process. This capability is especially valuable for unusual configuration and advanced concept development
where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design.

This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling
techniques are described and the ELAPS-based mass property analysis process is detailed. Examples of mass

property stochastic calculations produced during a recent systems study are provided. This study involved the
analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic

speeds. Due to the extreme nature of this high-altitude flight regime, few existing vehicle designs are available for
use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process
that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft

performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses
of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct

multidisciplinary trade studies at the conceptual design level.

Introduction

Aircraft conceptual and preliminary design are
increasingly being driven toward more rapid, robust
and collaborative methodologies. Geographically

distributed and broad discipline design teams are

expected to generate results faster than ever while
maintaining or improving quality. In industry, there
is an expanded interest in the use of semi-automated

multidisciplinary design systems to exploit minimally
constrained and therefore potentially broad design

spaces. These trends are being driven by
aggressively competitive strategies focused on
maximizing product value for cost and reducing time-

to-market. The mass property engineering discipline
is not isolated from these changes.

This paper describes a conceptual-level structural
mass property analysis methodology that utilizes the

Equivalent LAminated Plate Solution (ELAPS)
structural analysis tool [ 1-4]. The background of the
ELAPS tool is given with both advantages and

disadvantages described relative to finite element
analysis (FEA) and empirical weight equations.

Techniques for creating proper ELAPS models are
presented along with the trades available in modeling
structural detail versus structural behavior and mass

property accuracy. An introduction to stochastic
weight analysis is provided including its importance
in the conceptual design of advanced concepts and

unique vehicle configurations. The use of ELAPS
within a recent systems analysis study is discussed to
demonstrate how such a tool can be leveraged in a

collaborative, multidisciplinary design environment.

Issues Within and Current Approaches to

Structural Mass Property Analysis

At NASA, as in industry, there is a dichotomy in
mass property analysis techniques available: those for

use in a conventional technology vehicle analysis and

those methodologies useful for unusual
configurations and advanced vehicle concepts.



Studiesof conventional vehicles generally rely on
empirically derived weight relationships such as

those present in NASA's aircraft synthesis codes, the
Flight Optimization System (FLOPS [5,6]) and the

AirCraft SYNThesis (ACSYNT [7,8]) program.
Both FLOPS and ACSYNT contain the option to use
either default empirical weight equations or

empirically augmented piecewise beam analytical
methods for wing weight analysis. Neither of these

methods insures reasonable accuracy when the design
being investigated is beyond the scope of the vehicle

database within which the relationships have been
calibrated. When investigating unusual vehicle

configurations and vehicles / technologies for which
the database is insufficient or non-existent, ELAPS is

a more reliable structural mass property analysis tool
than empirical weight equations. It can be used for
lifting surface (i.e. wing, tail, and canard) structural

mass property analysis and has recently been
extended to fuselage structural analysis [9].

Historically, determining the weight of an aircraft

that lies outside the range of applicability of
empirical methods has been limited to two very
expensive approaches:

1.

.

very detailed design integrating both FEA

models and manufacturing process
definition & analysis

construction of prototypes

FEA usage in aerospace mass property engineering

has progressed to the level that preliminary structural
designs may be analyzed with low levels of

uncertainty when combined with a corresponding
knowledge of the as-built structural design [10,11].

However, best-case FEA sizing cycles for fully
configured, as-built vehicles currently run on the
order of three to six months. Compared to empirical

weight equations, FEA is highly accurate but costly
in both time and resources. There is little opportunity
for muitidisciplinary interaction or extensive trade

studies due to these large cycle times. The building
of prototypes is a reasonable alternative for small and
relatively inexpensive aircraft, such as those for

General Aviation and many Uninhabited Aerial

Vehicles (UAVs) but prohibitively expensive for
most commercial transport and military designs.
ELAPS was developed for and is uniquely suited to

fill the gap between empirical weight equations and
full FEA in the analysis and design of aerospace
vehicle structures.

Description of ELAPS

ELAPS is a design-oriented structural analysis tool

developed at the NASA Langley Research Center
over the past 15 years. It is intended to provide high-

fidelity analyses at low modeling and computational

cost. ELAPS is based upon equivalent plate theory
and primarily has two advantages over FEA when
used in conceptual and preliminary design:

The theoretical implementation of equivalent

plate theory in ELAPS is based upon polynomial
displacement functions that analytically describe
the shape change of the entire structure due to a

load. FEA uses systems of linear equations to
describe the interactions between individual

elements. The ELAPS approach generates much
smaller problems in terms of degrees of freedom

with correspondingly reduced requirements for
solution time and computational power. This

capability enhances ELAPS use within larger
automated design systems where repeated
analysis can create large cycle times.

. ELAPS can be described as a hybrid finite
element code in its own right. ELAPS uses

hybrid elements (referred to as "segments") that

represent whole sections of lifting surfaces (plate
segments, Figure la) or fuselages (shell
segments, Figure lb). When combined, a

minimal number of these segments are capable
of representing entire configurations. Internal
features such as spar and rib caps and webs,

frames, rings and stringers may be modeled
within the segment definitions. Both isotropic

material and composite lay-up (Figure 2)
modeling are available. Therefore, a single plate

segment could potentially be used to model an
entire simple wing. Conversely, a sufficiently
detailed (i.e. large number of segments) ELAPS
model can mirror the detail of a FEA model.

The benefits of using ELAPS diminish quickly

with complex models due to the FEA modeling
tools available commercially. However,
ELAPS's variable complexity capability enables

the use of simpler models than FEA, allowing
comparatively shorter design cycles. Simpler

modeling comes at the price of slightly reduced
accuracy, as equivalent plate theory is not as
capable as general finite element theory.

However, the accuracy of ELAPS compared to
FEA is generally very good [2-4,9].

ELAPS is capable of executing analyses similar to

FEA, including static analysis for displacement,



stressandstrainoutputaswellasvibrationalanalysis
for modeshapesandfrequencies(especiallyuseful
for flutteranalysis).It allowsthe modelingof
concentratedforces, pressure distributions,
temperaturedistributions,inertial loads and
combinationsthereofto producedesignload
conditions.

ELAPSmodelsof fullwing-body-tailconfigurations,
includingcomplexwinggeometriessuchasbox-
wingsandc-wings,movablecontrolsurfaces,engine
podsandcamberedfuselageshavebeencreated.All
platesegmentscanincludemodelsofairfoilsections
andfuselagemodelshavecontinuouslyvariable
radiuscapability.In its currentrelease,theonly
significantlimitation in ELAPS geometrical
modelingis therequirementthateachplatesegment
beatrapezoidwithtwoedgesparalleltothexz-plane
and that each fuselage segment be circular and
oriented in the x-axis direction. These limitations do

not restrict most configuration models and resulting

geometric discrepancies are at worst a quantifiable
uncertainty in mass property calculations.

ELAPS has been used to investigate numerous
aircraft concepts, from the High Speed Civil

Transport (HSCT) to Uninhabited Combat Aerial
Vehicles (UCAVs), Blended Wing Bodies (BWBs),
and various other advanced and unusual

configurations. It has also been integrated with

multidisciplinary optimization (MDO) systems and
has recently been enhanced to include analytical
derivatives for both static and dynamic structural

analyses. ELAPS's capability in modeling gross
features of a vehicle is more amenable to automated

parameterization for MDO than FEA where an
element grid must be regenerated and revalidated
after geometry or feature modifications. Within

MDO systems, ELAPS has been used as an
integrated analysis tool [12] and in the off-line

production of response surfaces [13-15].

ELAPS Structural Analysis Methodology

ELAPS models may be either extremely simple or

very complex, depending upon the design task
requirements. For example, a simple delta wing

typical for a fighter aircraft can be modeled as a
single plate segment (Figure 3, delta wing modeled as

a trapezoid with one very small edge). Ignoring the
degrees of freedom for transverse shear, no spar or
rib webs are necessary (though this will result in an

artificially over-stiff wing). The model is just as
easily created for an aluminum wing skin as for a

composite lay-up. The applied loads can be defined

as a uniform pressure distribution equivalent to the
total aerodynamic load present at the extremes of the
flight envelope (i.e. V-n diagram). If fuel mass is

neglected, the absence of its effective spanload
alleviation will result in a relatively conservative

wing weight. The time required to create such a
model is generally less than five minutes given an

existing file from which to "cut & paste". Once
created, the structural model can be quickly sized for

strength using a ratio of the allowable stress/strain to
the actual stress/strain to change the local structural

thickness across a coarse (e.g. 5x5) grid of points.
This method generally converges to an acceptable
result in three sizing cycles. For a single element

model, sizing requires approximately one minute per

cycle between output query and input file data
manipulation. Thus, the total time necessary to
create and "size" the structure for this model is about

eight minutes. Conducting a trade study on sweep or
aspect ratio generally requires slightly less than that

time for each independent variable. Such models are
not used in calculating as-built wing weight but are
useful in analyzing weight trends during the

multidisciplinary team' s initial sensitivity studies.

An example of a more detailed ELAPS modeling

approach may be illustrated with another version of
the delta wing model. First, it is necessary to
consider how the wing will constructed from

individual structural components based upon its
conceptualized smactural layout. One design
alternative is to use a box layout with spars arranged

parallel to the trailing edge and having ribs at the
wing root and mid-span (Figure 4). This model

might be created using two wing box plate segments
with "smeared" spars internal to the wing box,

separate leading- and trailing-edge control surface
plate segments forward and rear of the inboard wing
box, discrete spar segments for the main box spars,

and discrete rib segments. As shown in Figure 4, this
may be accomplished using ten plate segments. The
use of "smeared" webs allows the use of the

transverse shear degrees of freedom. Closing the
wing with discrete web segments creates a torque box

and produces the most accurate representation of
shear stiffness.

The wing box plate segments, if they were metal,
might contain two layers, one for the skin material
itself and one to represent the cap material of the

"smeared" spars distributed across the surface of the
skin. The skin material and spar cap material could

therefore be different, potentially with the spar caps
being unidirectional composites. The leading- and



trailing-edgesegmentsmaybe createdwith an
orthotropicmaterialhavingstrengthonlyin thex-
direction. Such components would not contribute to
bending stiffness (generally) but would translate

loads longitudinally from the control surfaces to the
main wing box. Fuel mass might be distributed

throughout the inboard main wing box while engine,

bomb, missile or drop tank mass could be added at
hard points for configurational CG and inertia
analyses as well as for structural sizing given taxi and

landing loads. Non-optimal mass may be added as a
"smeared" mass across the area of each segment or

added discretely as point mass. The wing cross-
sectional shape may be defined by airfoil depth and

camber information at multiple wing stations. The
aerodynamics group is able to use the same wing
geometric definition to provide an analysis (typically

vortex lattice or linear panel method) of design loads.

These aerodynamic analyses may often be completed
within the timeframe of creating the ELAPS model.
Loads may then be applied via detailed pressure

distributions in both spanwise and chordwise
directions.

Once the model is completed and the loads are
available (order of one hour), the bending material is

sized for strength and/or displacement constraints and
the wing skin and shear web material are sized for

torsional stiffness (i.e. divergence or twist/flutter
constraint). In an early conceptual design effort,

critical design load cases might include the maximum
pull-up, push-over, landing impact and taxi-bump
load cases. Structural resizing requires

approximately one minute per component per cycle,
on the order of ten minutes per cycle for this model.
As model complexity increases, the number of

convergence cycles increases with the convergence
for this example model requiring on the order of

approximately five to ten iterations.

In order to facilitate the use of ELAPS, MS Excel®

spreadsheets are currently used extensively to
automate geometrical calculations and to maintain

relational consistency during structural layout and
configurational trade studies. Further, a Graphical
User Interface (GUI) is under development to

accomplish similar tasks and will likely reduce the
modeling time for the detailed fighter wing example

by a factor of four.

Generating mass property design information using
ELAPS is generally not faster than with empirical
weight equations. However, ELAPS offers

advantages in the behavioral accuracy of structural
weight trends when compared to empirical weight

equations. The conceptualization of structural

models as a system of functional components is
inherent with using ELAPS and generally increases

the design team's understanding of weight trends.
Additionally, employing such a detailed perspective

within the conceptual design process promotes the
early consideration of issues such as systems

integration, material selection, part count, etc. These
features make ELAPS attractive even when an

empirical weight relationship is available.

The uncertainty in structural analysis-based mass

property predictions will decrease as the model
becomes more detailed. In the ELAPS-based

process, this effect is due to the accuracy inherent
within a more representative structural behavior and

the statistical decrease in uncertainty that comes with
decomposing the analysis by structural components

(see Appendix). There is a tradeoff between the
extent to which the structural design must be broken
down into separate components and the desire to

minimize uncertainty. ELAPS enables the engineer
to tailor this tradeoff to meet the study requirements

in a manner that is conducive to creating reusable
models with flexible detail.

ELAPS Non-Structural Mass Modeling

Various methods are available for modeling non-

structural mass such as system weight, payload, fuel,
etc. Concentrated masses allow a discrete mass to be

added to the model at a specific point in space. Mass
may be "smeared" across the planform area of a
given segment such as for the application of a fuel

tank sealant or in the case of non-optimal structural
mass (discussed in next section). A special option is
available to distribute mass through plate segments as

a function of available volume (as in the case of fuel
in wing tanks). ELAPS output includes a mass

breakdown for each plate and fuselage segment and it
calculates the entire configuration's center of gravity
(CG) location, total mass and various moments of
inertia -- all of which include both structural and non-

structural masses.

Non-Optimal Mass

ELAPS has moved beyond the original intended use

of its author. It was envisioned primarily as a tool for

determining weight trends due to conceptual design-
level variables such as aspect ratio, wing break
location, thickness-to-chord ratio, etc. while

providing a reasonably accurate structural model with



nearlyunlimitedconfigurationalmodeling. The
originallimitationtoweighttrends is grounded in the
fact that structural analysis methods do not, in and of

themselves, allow for the prediction of as-built mass.

ELAPS is no different than FEA in that the calculated

structural mass is an ideal mass. The ideal mass is
related to the ideal structural model that both ELAPS

and FEA explicitly define. To illustrate, consider a

chordwise wing joint that occurs where the leading
edge is attached to the forward spar and main wing
box. ELAPS and FEA vehicle models generally

idealize such joints as in Figure 5a, whereas the as-
built joint will look more like that in Figure 5b.

The mass associated with items required for idealized
structure to be manufactured and assembled is

referred to as non-optimal mass. The non-optimal
mass factor (NOMF) is defined as:

as-built mass
NOMF = (1)

ideal mass

Historically, the top-level NOMF for an entire
aluminum commercial transport wing has been on the
order of two (200%). The NOMF for individual

wing components (i.e. skin panel, spar cap, shear
web) can vary from less than 105% to greater than

5000% depending on the type of component,
manufacturing design philosophy, and system issues

such as access holes and panels.

Understanding the trend in ideal weight is important

both from a fundamental design perspective and
because the non-optimal material is a function of the

required idealized structure. However, having an
accurate knowledge of the NOMF is as important as
the ideal weight due to its impact on the uncertainty

of as-built weight.

Stochastic Weight Analysis

ELAPS provides the ability to conduct a detailed and
accurate structural analysis when compared to other

techniques available for conceptual design. The
uncertainty in the ideal weight, determined through
structural sizing, is very small within the boundaries

of the analysis assumptions (i.e. completeness of the
load case set, material property values and the level

of modeling detail). The use of NOMFs to produce
as-built weight analyses from the results of structural
sizing is the primary source of mass property

uncertainty within the ELAPS-based process and the

focus of ongoing work at NASA.

The understanding of uncertainty and the

communication of the level of uncertainty to the
larger design team are essential to the production of

closed, robust vehicle designs. For example, the

structural weight of a vehicle might be estimated to
be between 10,000 and 16,000 lb. but most likely

around 11,500 lb. This information is equivalent to

the probability distribution shown in Figure 6. The
mean value (50% cumulative probability) of this
distribution occurs at 12,500 lb. Therefore, the

weight is as likely to be greater than 12,500 lb. as it is
to be less than 12,500 lb. Further, this information is

statistically equivalent to a 90% confidence that the

weight is 12,500 + 2050 lb. With this information,

the design effort may be directed to produce a
configuration whose performance will be relatively
insensitive to this level of uncertainty. Failure to take

this uncertainty into account could lead to undersized
designs that cannot meet mission requirements or

inefficient, oversized designs that violate cost
constraints.

Traditionally, the mass property group issues new

(and changing) discrete estimates at the end of each
design iteration. Under a probabilistic approach, the
mass property engineering group issues new

probability distributions with each design iteration.
Successive generations of these distributions
demonstrate both the increase in confidence (learning

curve leading to a decrease in the uncertainty within

the analysis, Figure 7) and the movement of the mean
value of distribution (Figure 8). This information
allows the design team to increase and track the

robustness of the overall system throughout the
design process and prevents the team from "locking
in" design decisions until risk is abated. As a general

approach, it is applicable to all disciplines.

An ELAPS model of an existing, or otherwise known
mass property, structure must be constructed for
NOMF calibration. The calibration model should

contain structural components corresponding to the
detail available in the existing vehicle weight
statement in order to simplify the task of correlating

component ideal weights to the as-built weights in

the weight statement.

For a given component (i.e. a spar web), the NOMF
at one location in the wing may be significantly

different than that for another location in the wing.

There are several possible reasons for this occurrence
including the presence of access holes requiring



heavydoublers or the use of minimum gage material
that is proportionally heavy relative to local loads.

Two approaches to reconcile this issue include
segmenting the component NOMFs with regard to

location (i.e. inboard and outboard) or using the
variability in the component NOMF within the

process for analyzing the NOMF uncertainty.

The uncertainty in determining NOMFs typically far

outweighs the uncertainty in structural analysis in
conceptual and preliminary design applications. It is

therefore critical to capture the effects of NOMF
uncertainty at the component level and then

analytically determine the uncertainty at the
configuration level. This is accomplished through

the generation of a simple probability distribution for
each component's NOMF. Generally, uniform or

triangular distributions are the easiest to develop,
especially when input from other disciplines is

required (i.e. manufacturing design). A uniform
distribution is typically referenced by a discrete value
with a +interval, the values within the range having

equivalent probability of occurrence. A triangular

distribution is defined with the end points as the
smallest and largest expected NOMF value and the

peak as the "most likely" NOMF value. The height
of the triangle is found by setting the area equal to
one, i.e. the cumulative probability for the total

distribution must equal one.

There are two techniques available for configuration-
level stochastic weight analysis. The first is more
statistically correct than the second, requiring

correspondingly greater time and effort:

1. The first technique requires the implementation
of the Design of Experiments (DOE) approach

and Monte Carlo Simulation [15,16]. Using the
probability distributions for each component
NOMF, a statistically significant sub-set of the

set of all possible NOMFs are randomly
generated, where a set includes a discrete NOMF

for each component modeled. Each set is used to
generate an instance of as-built weight. For
example:

Was_buil t =

Wing _ Skin _ Components

E Wideati "NOMFi +
i=1

Wing _ Spar _ Components

EWh_al i •NOMF i +
i=l

Wing _ Rib_ Cotnl_nentJ

_Wldeal i "NOMFi + K

i=1

(2)

2.

As instances of as-built weight are generated

through Monte Carlo Simulation, a histogram of
as-built weight is constructed. If the structural
model is complex and involves large numbers of
segments, then the number of NOMF sets

required for statistical significance becomes very

large per the Curse of Dimensionality. A Pareto
analysis [17] may be used to identify NOMFs

throughout the model that may be excluded from
the DoE process based upon the insensitivity of
the top-level weight analysis to their value.

The second technique is often used when there is

not enough time to implement DoE in the
creation of NOMF sets, the level of NOMF

uncertainty is too large or the model is too
simple to justify DoE implementation. Again,

this technique is not statistically valid but is
useful in conceptual design due to an

approximate treatment of NOMF uncertainty.
This technique requires only three NOMF sets:
the set of all smallest possible NOMFs, the set of

all largest possible NOMFs, and the set of all
"most likely" NOMFs. For uniform
distributions, the "most likely" NOMF should be
the mean value. These three NOMF sets are used

to generate three discrete values of

configuration-level as-built weight. Either a
triangular probability distribution may be

constructed from these discrete values or they
may be used in a curve fitting process to allow
the use of other probability distribution formulae

(i.e. exponential, beta or gamma).

ELAPS Use in a Concurrent Engineering Context

ELAPS was employed within an independent
assessment study initiated by NASA's Environmental

Research Aircraft & Sensor Technology (ERAST)
Program during the summer of 1997 [18,19]. The
study was requested as a technical evaluation of

vehicle design proposals being submitted for a Proof-
of-Concept (POC) aircraft. This POC is intended to

flight test and demonstrate technologies for an
85,000-ft cruise altitude subsonic UAV serving as an

environmental research platform. Three vehicle
design proposals were submitted by companies
participating in the ERAST program that will be

referred to as Concepts A, B and C (Figure 9a-c).
Due to the highly proprietary nature of these design

proposals, only publicly available graphical images
and non-dimensionalized stochastic analysis results

will be discussed in this paper.



High altitude,long endurance,subsonicaircraft
conceptsgenerallyhavethreedistinguishingfeatures:
intermittentcombustionenginesdrivingpropellers,
sophisticatedcoolingsystems,andveryhighaspect
ratio(>20),highlycamberedwings.Thewingspars
aregenerallyunsweptandwing constructionis
almost 100% compositefor low weight in
combinationwithhighstrength.Thereareveryfew
existingaircraftwithinthisclassandnonehavebeen
designedto fly above70,000ft. Someof the
companiessubmittingPOCconceptshavebuilt
vehiclesfor lessdemandingmissions(company
databasesareontheorderofoneortwoaircraft)and
basedtheirPOCvehiclestructuralweightestimates
on thisexperience.Noneof thecompanieswere
willingtosharethisproprietarydatawithNASA.

The Boeing Condor aircraft (Figure 10) was designed

to fly to 65,000 ft for military reconnaissance
missions and its design and test data were available to
the government. However, a single aircraft does not

populate a regression database for empirical weight
estimation. Therefore, ELAPS was used to calculate

structural weight for comparison to company
estimates.

The creation of an ELAPS model of Condor (Figure

11) enabled validation of the ELAPS structural sizing
and analysis process as well as the evaluation of
aeroelasticity effects for ERAST-class vehicles. This

was possible because a component-level group
weight statement, the design flight envelope and

material specifications were available for this vehicle.
A comparison of static wing deflection to Boeing test
data demonstrated very good agreement (Figure 12).

Vibrational analysis (Figure 13) demonstrated good
mode shape matching and adequate frequency

matching. Mode shape matching demonstrates a
good correlation to the stiffness behavior of the flight

vehicle. The frequency match demonstrates that the
mass distribution modeling could have been more
precise but was reasonable given the amount of data
available in the Condor weight statements and design

specifications.

Aeroelastic effects have a significant impact on the
aerodynamic performance of this class of vehicles

because of the very high aspect ratio wings and aft
camber. The Condor ELAPS model predicted that
the wing tip would deflect more than 13 ft upward

and would wash-out (twist leading edge down)

approximately 2°, both of which agreed well with
Boeing data. This wing geometry change results in

the load distribution shift shown in Figure 14 and
increases the lift-induced drag three counts, a

significant amount given the extreme flight
conditions. The analysis process shown in Figure 15
creates the ability to predict such aeroelastic

performance impacts. Additionally, the ELAPS
model of Condor also predicted that both the mission

point (altitude, speed and weight) and the fuel
condition (which tanks are full or empty) could have

a tremendous impact on the aeroelastic behavior of
ERAST-class vehicles.

The primary drawback to using ELAPS for

calculating structural weight is the requirement to be
able to predict NOMFs. The ELAPS model of the
Condor was used to calibrate NOMFs for this study.

This was accomplished by comparing sized structural

component ideal weights in the Condor ELAPS
model to the as-built component weights in the

component-level group weight statement. Condor
was used for the NOMF calibration because it was

felt that the vehicle was constructed in a roughly
similar manner to what was likely for the three POC

concept proposals.

The mass property analysis process used in this

system study followed the second configuration-level
stochastic analysis technique described in the

previous section. This decision was attributed to the
magnitude of uncertainty in the Condor-derived

NOMFs and the use of relatively simple ELAPS
models of the POC concepts due to time constraints.
The ELAPS models consisted of wing skin, spar cap,

spar web and rib web components in addition to a
fuselage beam and control surface plate segments.

The wing skins and spar caps were structurally sized
for strength and twist deflection limits. It was

unnecessary to size the shear webs and the fuselage
was not sized. Control surfaces were not sized and

were assumed to have a constant mass per unit area

based upon Condor calibrations.

The three NOMF sets used for configuration-level as-

built weight probability distribution construction
consisted of:

Smallest: equivalent to ideal weight with all
NOMFs equal to 1.0

Largest: equivalent to the full value of NOMF
derived from Condor

Most Likely: set of NOMFs reduced from
Condor values due to differences in

manufacturing construction. For example,

Boeing used 0/+45/90 skin lay-ups compared to

+45 lay-up for the proposed vehicles and the



Condorwingboxwasmostlysealedfor fuel
whilePOC-missionfuel tanksspana much
smallerfractionthanthewing.

Thesethreediscretepointswereusedto construct
Gammaprobabilitydistributions(Figures16a-c).
TheGammafunctionwasusedin thecurvefit asit
provided a more reasonabledistributionof
probabilitythana triangulardistribution.Thelarge
uncertaintyevidentin thesedistributionsisnotto be
dismissedasit is representativeof thelevelof first-
iterationconceptualdesigninformationavailablefor
thisclassofaircraft.

The "goodness" of company discrete wing weight
estimates (normalized to one in Figures 16a-c) is

evaluated against the mean value of the distribution.
Recall that the weight is just as likely to be greater
than as it is to be less than the mean. Therefore,

companies providing wing weight estimates with a
value higher than the mean are termed to be relatively

conservative. A company-provided estimate below
the mean is relatively optimistic. Note that for

Concepts A and C, the company discrete estimates
compare very well with the mean of each
distribution. Concept B's distribution has a larger

uncertainty than either A or C because its design

resulted in heavier wing skins and the wing skin
NOMF was highly uncertain. The mean value of the
distribution must therefore move higher because it is

anchored at a minimum value equivalent to the ideal
weight. The ability to identify the factors
contributing to uncertainty is useful as they may be

accounted for in the comparison of weight prediction
risk levels.

The creation and use of ELAPS models of the

proposed designs in the POC study provided the
following:

1. Stochastic analysis of structural weight for the
analysis of relative risk in company-provided
weight estimates

2. Identification of structural and configuration
design issues inherent in the proposed concepts

3. Aeroelastic effects on vehicle performance

Conclusions

The use of ELAPS enables a synergistic, concurrent
and multidisciplinary approach to conceptual and

preliminary design. A design team incorporating
ELAPS into a larger suite of tools is able to conduct

multidisciplinary trade studies through the linkage of

aerodynamics, structures and other disciplines. With

all disciplines working from similar geometry
descriptions and sharing sensitivity data,
comqgurational design alternatives may be more

rapidly evaluated in detail.

Using ELAPS in a multidisciplinary design system
allows for the consideration of aeroelasticity.

Aeroelastic effects may strongly influence vehicle
performance through weight and aerodynamic

efficiency. The capture of these effects early in the
design process may reduce overall design cycle time
and cost.

The ELAPS-based stochastic weight analysis process

is superior to the use of empirical equations and FEA
in the conceptual and preliminary design of unusually

configured aircraft and vehicles employing advanced

technologies. In these situations, this process is
generally more accurate than empirical weight
equations and less time-consuming and costly than

FEA. Even in conventional design applications,
using the ELAPS-based process adds structural
behavior knowledge to the earliest stages of design

and also allows stochastic weight analysis. The use
of stochastic analysis techniques during conceptual
design is critical to the quick and cost-effective

achievement of robust designs.

Appendix

It is incumbent upon the mass properties group to be
able to affix a confidence interval to their discrete

values, i.e. there is 95% certainty that the weight of a

particular component will be within 5:10 lb. of the

prediction. In this example +10 lb. is the 95%
confidence interval. Confidence intervals enable the

system design group to use sensitivity studies to
guide their efforts towards achieving a design for

which the requirements are robustly met within an
overall acceptable level of risk. The bottom-line

value of mass property analyses are determined by
their impact on the amount of system design effort

required to achieve a robust design within the
acceptable level of risk. Minimizing system-level
risk thresholds drives the mass properties group to
minimize the confidence intervals around their

component predictions, i.e. to move from +10 lb. to

-t-2 lb. while maintaining 95% confidence. Such a

requirement tends to cost the design team (and the
customer) by way of both longer design cycles and a
larger number of cycle iterations. This illustrates the

tradeoff between design robustness at acceptable risk
and system development time and cost.



Aircraftmasspropertyanalysistechniques have
historically been dominated by extremes: at one end

are empirical weight equations and at the other end
are high-order analyses typified by augmented finite

element methods. Empirical weight equations
require minimal design information relative to the

detailed analyses and are therefore far faster and
cheaper to produce. They come at the cost, however,

of having relatively larger confidence intervals.
Many weight equations used in the commercial
aircraft industry are said to have less (sometimes

much less) than 10% absolute (i.e. 100% confidence)

weight uncertainty when applied to derivative or next
generation designs. This is only true because the
designs to which these equations are applied are
similar to the historical database of aircraft used to

derive their empirical form. This is also only true

with designs containing only incremental
technological improvements over the same pool of

aircraft, i.e. a composite wing weight prediction
cannot be determined with the same confidence as an

aluminum wing when the historical database contains

only aluminum wings. Such improvements are often
accounted for by applying factors derived either

intuitively or through experimentation or research.
Neither method reproduces the confidence intervals

inherent within the historical database upon which
the empirical equation remains based.

Assume that an empirical weight equation whose
regression and historical usage demonstrates

approximately +_5% weight accuracy with 90%

confidence. For a 46,000 lb. wing this translates to
+_2300 lb. confidence interval. Now let's assume that

we have several weight equations used to build up the
total wing weight prediction, i.e. we have an equation
for the basic structure of the center section, the basic

structure of the outboard wing sections, the

secondary structure, the ailerons, flaps, leading edge
devices, and spoilers. Each equation was derived

using regression analysis and demonstrates the same
+5% weight accuracy with a 90% confidence

interval. The results for each equation and the
associated 90% confidence intervals are shown in
Table 1.

Note that the uncertainty in the built-up wing weight

prediction (1576.7 lb.) is less than that derived from
the single equation for wing weight (2300 lb.). This
result is due to the fact that, for the build-up case, the

total uncertainty is the square root of the sum of the
squares of the component uncertainties. This

relationship is derived as:

R= f(a,b,c ..... ) (A.1)

Where R is some result and a, b, c... are

mathematically independent quantities. Then the
uncertainty in R resulting from uncertainties in a, b,
c,... is:

• )2bR

---_._(a) +

,_(R)= oo"_(°) +
I

(A.2)

Where 8(x) is the confidence interval of x and oqPdSx

is the partial derivative of R with respect to x. This

equation follows the differential calculus of small
changes and, strictly speaking, assumes that
confidence intervals are small and that the partial
derivatives of R do not become infinite.

Table 1: Wing weight estimate and uncertainty build-up

Wing Group

Estimated Weight (lb.) 90% Confidence Interval (lb.)
45997.8 1576.7

Basic structure - center section 5238.7 261.9

outer panel 30535.3 1526.8

Secondary structure 1056.0 52.8
Ailerons 596.2 29.8

Flaps 4824.4 241.2

Leading edge devices 3055.2 152.8

Spoilers 692.0 34.6
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For our wing weight build-up case involving N
components:

N

WWING=_(WcoMPONENTS)=_Wi (a.3)

i=I

Then

OWr = 1 (A.4)

And

(A.5)

Referring back to Table 1, our total wing weight
uncertainty of 1576.7 lb. (about 3.8%) is dominated

by the uncertainty in the outer wing panel structural
weight uncertainty of 1526.8 lb. In fact, the
confidence intervals for all components other than the

outer wing panel basic structure could increase to

+_20% accuracy and the total wing uncertainty would
still remain less than that for the single equation with

:t.5% accuracy. This demonstrates that it would not

be cost effective to try to reduce the uncertainty in
the secondary structure, ailerons, or spoilers before

first attacking the uncertainty in outer wing panel
weight. A mass properties group might actually elect

to sacrifice accuracy in these areas in deference to
expending their efforts to improve accuracy in the
outer wing basic structure.

A cost-effective approach designed to reduce system-

level confidence intervals in mass property analysis is
to:

1. Decompose the weight build-up at
successive levels of structural

component detail.
2. Identify components dominating level

uncertainty.
3. Seek to reduce the confidence intervals

in those components.
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Figure la: ELAPS lifting surface plate segments
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Figure lb: ELAPS fuselage shell segments
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Figure 2: Analytical modeling of segments [1]
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Figure 3: Single-Element Delta Wing Model
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Figure 4: Componentized Delta Wing Model
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Figure 9a: POC Concept A
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Figure 9c: POC Concept C

Figure 10: Boeing Condor UAV

Figure 11: Semi-span diagram of Condor model
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Figure 13: ELAPS vibrational analysis of Condor
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